Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI

# Determining the lattice constant for molybdenum using the Debye-Scherrer method









## **Experiment 35 B**

DLF

DYDAKTYCZNE Laboratorium

**FIZYCZNE** 



#### I. Background theory.

- 1. Production of X-rays.
- 2. Construction of X-ray tubes.
- 3. Properties of the X-ray spectrum:
  - a) continuous spectrum;
  - b) quantum limit;
  - c) characteristic spectrum:
    - Moseley's law,
    - absorption edge,
    - atomic energy levels of copper.
- 4. Fundamentals of crystallography:
  - a) point lattice;
  - b) crystallographic arrangements;
  - c) unit cell;
  - d) Bravais lattice;
  - e) lattice planes, Miller indices;
  - f) crystal structure, monocrystalline solids (for example: Mo);
  - g) reciprocal lattice.
- 5. X-ray diffraction in crystals:
  - a) Thomson scattering by electrons, atoms and unit cells;
  - b) intensity of the diffracted beam, structure factor;
  - c) other factors affecting the intensity of diffraction lines in the powder method (factors: polarization, Lorentz, multiplicity of network planes);
  - d) Bragg's law.

#### II. Experimental tasks.

1. Familiarise yourself with the functioning of the X-ray module shown in *Pictures 1 - 3*.



Picture 1. X-ray module with computer.





- 2. Measure the intensity of X-ray spectrum as a function of Bragg angle  $\not = \vartheta$  for the polycrystalline Mo sample using a lamp with a Cu anode (see *Appendix A* for instructions).
- 3. Assign the resulting diffraction lines to their corresponding Miller indices (hkl) for crystallographic planes.
- 4. Calculate the lattice constant for molybdenum and determine the type of Bravais lattice according to the calculations in *Table 1* in *Appendix B*.
- 5. Based on formula from equation (3) in *Appendix B*, calculate the number of atoms in the unit cell of molybdenum.

#### III. Apparatus.

- 1. X-ray unit with built-in goniometer and replaceable Cu lamp.
- 2. Computer.

#### IV. Literature.

- 1. Ch. Kittel "Introduction to Solid State Physics", Wiley & Sons, 2004.
- 2. G. Burns "Solid State Physics", Academic Press, Inc. London 1985.
- 3. R. Steadman "Crystallography", Van Nostrand Reinhold (UK) Co. Ltd., 1982.
- 4. M. F. Ladd, R.A. Palmer "*Structure Determination by X Ray Crystallography*", Plenum Press. New York and London 1985.
- 5. K. Hermbecker Handbook "*Physics X-Ray Experiments*", PHYWE Series of Publication.
- 6. H.A. Enge, M.R. Wehr, J.A. Richards "Introduction to Atomic Physics", Wesley, 1981.
- 7. H. Haken, M.Ch. Wolf "The Physics of Atoms and Quanta", Springer, 2000.
- 8. V. Acosta, C.L. Cowan, B.J. Graham "Essentials of Modern Physics", New York 1973.
- 9. D. Halliday, R. Resnick, J. Walker "Fundamentals of Physics", Wiley & Sons, Inc., 2001.
- 10. Ch. Hammond "The Basic of Crystallography and Diffraction", Oxford Science Publications, Oxford 2009.






## Appendix A

#### Instructions for the experiment

1. Prepare the sample for measurement.

Mix an appropriate amount of fine-crystalline molybdenum on a piece of paper with a small amount of Vaseline, to form a uniform mixture. Then place it in the hollow metal plate (2 in *Picture 2*) and level the sample surface with a spatula.

This is important because surface irregularities have a marked effect on line intensity – uneven surfaces will result in the intensity of low angle reflections being too small.



Picture 2. Additional X-ray equipment: 1 – sample holder; 2 – polycrystalline sample holder; 3 – LiF crystal analyser.

2. Place the plate with the sample in the holder 1 in *Picture 2* and then mount it on the goniometer (6 in *Picture 3*).



Picture 3. X-ray module: 1 – module with anode; 2 – radiation source; 3 – aperture; 4 – sliding cover locking knob; 5 – goniometer scale; 6 – goniometer; 7 – ionisation detector.





- 3. Place the aperture with a diameter of  $\Phi$  = 2mm on the X-ray output with a Ni filter.
- 4. Set the goniometer to position 4,5 (see *Picture 3*).
- 5. Turn on the X-ray unit by switching power switch on the back. The display will show the symbol Cu for a few seconds corresponding to the installed anode.
- 6. Close and lock the sliding glass door in the measuring chamber. To do this, push the red locking knob in and turn it a quarter turn to the left.



- Turn on your computer and double-click the yellow icon M the shortcut to Measure. This will launch the main program window.
- 8. In order to perform the measurements, select **File** and then **New measurement.** Doing so will open the settings window for the measurement.

| 🗰 Phywe measure 4                               |                                                                                  |                                                      |                               |
|-------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------|
| 📅 File Gauge Measurement Analysis Options Windo | v Help                                                                           |                                                      | _ 8 ×                         |
| ● 🗲 🖬 🎒 🔲 🔯 🗠 🛛 🍳 ┥                             | ▶▲▼ ◆歴 № Q +                                                                     | A # X 🖕                                              |                               |
|                                                 |                                                                                  |                                                      |                               |
|                                                 | ≤ d0   <b>*</b> 0%    <u>1.≫</u>                                                 |                                                      |                               |
|                                                 |                                                                                  |                                                      |                               |
|                                                 |                                                                                  |                                                      |                               |
| X-ray dev                                       | ice <serial 90906493-407-147<="" no.:="" th=""><th>52&gt;</th><th></th></serial> | 52>                                                  |                               |
| Type of<br>• spec                               | ra Otransmission curve Oir                                                       | npulse count 🕜 Compton experiment                    |                               |
| -X-data                                         |                                                                                  | Emissions current Integration time                   |                               |
| Crystal                                         | angle 🗾                                                                          | 1 mA 3 s                                             |                               |
| Voltage                                         |                                                                                  | Rotation mod                                         |                               |
|                                                 | tant voltage 35 KV                                                               | 2:1 coupled mode                                     |                               |
| C varia                                         | ble voltage                                                                      | C fixed crystal angle 45                             |                               |
| mir                                             | mai voitage 5 KV                                                                 | C both angles constant                               |                               |
|                                                 | imal voltage 35 KV                                                               |                                                      |                               |
|                                                 | ae increment 2 KV                                                                | Crystal angle                                        |                               |
| Val                                             |                                                                                  | starting angle 20                                    |                               |
| Setup                                           |                                                                                  | stopping angle 25                                    |                               |
| Anode                                           | naterial Cu                                                                      | angle increment 0,1 *                                |                               |
| Crystal                                         | LiF (100); d=201,4pm 💌                                                           | Displays                                             |                               |
| Absorb                                          | er no absorber 🔹                                                                 | 🔽 Crystal angle 🔽 Impulse rate                       |                               |
| Filter                                          | no filter 💌                                                                      | Detector angle     Spectrum     Voltage     Geometry |                               |
|                                                 | Crystal / Absorber / Filter                                                      | Emissions current                                    |                               |
|                                                 | Continue                                                                         | Cancel                                               |                               |
|                                                 | Contained                                                                        | Ver 02.10                                            |                               |
|                                                 |                                                                                  |                                                      |                               |
|                                                 |                                                                                  |                                                      |                               |
|                                                 |                                                                                  |                                                      |                               |
|                                                 |                                                                                  |                                                      |                               |
| Starts a new measurement                        |                                                                                  |                                                      |                               |
| Start 💛 🧐 🧭 🧰 Phywe measure 4                   |                                                                                  |                                                      | <ul> <li>S 🕲 15:37</li> </ul> |

Picture 4. Measurement settings window.

- 9. Using *Picture 4,* set the correct measurement parameters:
  - counting time (integration time) 30 s;
  - step (angle increment) 0,1°;
  - scanning range 15° 50°;
  - anode voltage  $U_A = 35 kV$ ; anode current  $I_A = 1 mA$ .
- 10. Press **Continue** to accept all the settings and go to the measurement window.

#### 11. Click START.





### **Appendix B**

Formulae and other information necessary for the experiment

Bragg formula

$$2dsin\vartheta = n\lambda.$$
 (1)

Interplanar distance  $d_{hkl}$  for a regular lattice

$$\frac{1}{d_{hkl}^2} = \frac{1}{a^2} \left( h^2 + k^2 + l^2 \right).$$
 (2)

Density  $\rho$ 

$$\rho = \frac{M}{V} = n \cdot m \cdot \frac{1}{a^3}, \qquad (3)$$

where :  $m = \frac{m_A}{N}$   $\rightarrow$ ,  $n = \frac{\rho N a^3}{m_A}$ ;

*n* - number of atoms in the unit cell;

m – mass of 1 atom of Mo ;

 $m_A$  – atomic weight for Mo :  $m_A$  = 10,2 g;

*N* - Avogadro's number N =  $6,022 \cdot 10^{23}$  atoms/mol;

*a* - lattice constant for crystalline Mo;


 $\rho$  - density of molybdenum :  $\rho$  = 10,2 g/cm<sup>3</sup>.

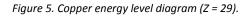

Wavelength components  $K_{\beta}$  and  $K_{\alpha}$  for **Cu anode** :  $\lambda$  (K $\beta$ ) = 139,22 pm ;  $\lambda$  (K $\alpha$ ) = 154,18 pm.

Table 1. Example table to perform the calculations.

| Line nr. | $\mathscr{G}^{o}$ | sin 9 | sin² 9 | $s=h^2+k^2+l^2$ | sin² | a[pm] | hkl | ∆a[pm] |
|----------|-------------------|-------|--------|-----------------|------|-------|-----|--------|
|          |                   |       |        |                 |      |       |     |        |

The energy level diagram for copper is shown in Figure 5.





